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ABSTRACT 
 

Ant colonies, and more generally social insect societies, are distributed systems that, in spite of the 

simplicity of their individuals, present a highly structured social organization. As a result of this 

organization, ant colonies can accomplish complex tasks that in some cases far exceed the individual 

capacities of a single ant. 

 

Real ants are capable of finding the shortest path from their nest to a food source without visual sensing. 

They are also able to adapt to changes in the environment. “Ant Colony Optimization” is an algorithm 

which searches for the solution of the problem under consideration in the way similar to real ants. It tries 

to make use of real ant abilities to solve various optimization problems. In this report study of simple ant 

algorithms has been done. Also, as an example they are applied on famous Traveling Salesman Problem. 

Finally, some results are tabulated comparing these algorithms with other optimization heuristics.   
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I. INTRODUCTION 

 

     Ant colonies have always fascinated human beings. 

Ants appeared on the earth some 100 millions of years 

ago, and like human beings, they can be found virtually 

everywhere on the earth. Ants are undoubtedly one of 

the most successful species on the earth today, and they 

have been so for the last 100 million years. What 

particularly strikes the occasional observer as well as the 

scientist is the high degree of social organization that 

these insects can achieve in spite of very limited 

individual capabilities. 

 

Ant algorithms are inspired by the behavior of ants. 

They try to simulate mathematically what these ants do 

in the real environment, and use these simulations to 

solve other problems of interest. The first algorithm 

which can be classified within this framework was 

presented in 1991 (see [1], [2]) and, since then, many 

diverse variants of the basic principle have been 

proposed.  

 

ACO belongs to a class of algorithm, whose first 

member, known as Ant system was initially proposed by 

3 men, namely A. Colomi, M. Dorigo , V. Maniezzo(see 

[1], [2] )  

 

Ant algorithms are multi-agent systems in which the 

behavior of every single agent, called artificial ants (or 

simply ants), is inspired by the behavior of real ants (see 

[3]). An agent is an autonomous entity with an 

ontological commitment and agenda of its own. 

Ontological commitment is a statement in which the 

existence of one thing is presupposed or implied by 

asserting the existence of another. So, Multi-Agent 

System can be defined as a system composed of several 

agents, capable of mutual interaction. The interaction 

can be in the form of message passing or producing 

changes in their common environment (i.e. direct 

communication or indirect communication). A very 

good example of MAS is human organizations and 

societies. 

 
Figure 1: Experimental apparatus for the bridge experiment 
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The experimental observation is that, after some time 

(i.e. few minutes) most of the ants use the shortest path, 

furthermore it is also seen that probability of selecting 

the shortest branch increases with the increase in 

difference in the lengths of the two paths.  

 

The emergence of this shortest path selection behavior 

can be explained in terms of  

1) Autocatalysis (i.e. positive feedback) and,  

2) Differential path length                                                                                          

 

And it is made possible by an indirect form of 

communication known as stigmergy. Stigmergy is a 

particular form of indirect communication (mediated by 

local modifications in the environment) used by social 

insects to coordinate their activities (see [3], [4]). By 

exploiting the stigmergic approach to coordination, 

researchers have been able to design a number of 

successful algorithms in such diverse application fields 

as combinatorial optimization, routing in communication 

networks, graph drawing and partitioning, and so on (see 

[6]). Argentine ants, while going from the nest to the 

food source and vice versa, deposit a chemical substance 

known as pheromone, on the ground (see [3]). Now, 

when they arrive at a decision point that is at a point, 

then they make a probabilistic choice which is further 

based on the amount of pheromone they smell on the 

branches. This behavior has an autocatalytic effect 

because of the very fact that choosing a path will 

increase its probability that it will be chosen again by the 

future ants as they will increase the amount of 

pheromone on the path which is used by them.  

 

Coming back to the experiment by Goss et al at the 

beginning of the experiment since there is no pheromone 

on any of the branches, therefore ants going from nest to 

the food will choose any one of the two branches with 

equal probability, but due to the differential branch 

length, the ants choosing the shorter path/branch will 

reach to the food source earlier (so this path now, has the 

higher probability of getting selected due to the fact that 

ants released the pheromone trail in the forward journey) 

and will therefore choose the shorter path with higher 

probability then the longer one. New pheromone will be 

released on the chosen path making it even more 

attractive for the subsequent ants. As the process iterates, 

rate of deposition of the pheromone on the shorter 

branch is higher than that is on the longer path. 

Therefore, the shorter path is more and more frequently 

selected by the ants until, eventually all ants end up 

using the short path. (see [3], [5]) 

 

In this report simple ant colony optimization techniques 

are discussed. Some stress is laid on, how it is 

engineered and put to work so that a colony of artificial 

ants can find good solutions to difficult optimization 

problem. Also how these ant algorithms can be modified 

in order to enlarge the domain of application of these 

algorithms. In the last chapter a comparative study has 

been done to compare the performance of ACO with 

other optimization algorithms.  

 

II. METHODS AND MATERIAL 

 

Simple Ant Colony Optimization  
 

2.1 Simple-ACO 

In this section a very simple ant-based algorithm is 

presented to illustrate the basic behavior of the ACO 

meta-heuristic and to put in evidence its basic 

components. The main task of each artificial ant, 

similarly to their natural counterparts, is to find a 

shortest path between a pair of nodes on a graph on 

which the problem representation is suitably mapped. 

 

2.2 Experiments conducted 

 

2.2.1 Single bridge experiment  

This experiment was conducted by Deneubourg et al., in 

1990, (see the figure above), (see [7]) to study the ants 

foraging in the controlled conditions. Here a colony of 

ants (Linepithema humile) is taken and separated by a 

food source by a bridge (as shown above) where both 

branches have equal lengths. Ants are then left free to 

move between the food source and the ant colony. 

Thereafter, their behaviour is observed and plotted on 

the graph (as shown above). Observation of the 

experiments are that initially after a transitory phase all 

ants converge to a single path that is despite of equal 

lengths of the paths all ants after some time used the 

same path. This basically proves the existence of the 

pheromone, (discussed in section 1.3). Initially, no 

branch has any pheromone on it, which are therefore 

selected by the ants with equal probability, but as more 

and more ants use the upper path the rate of deposition 

of the pheromone on the upper path is greater, though 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

 
 

 
14 

some ants do take lower path but as more ants choose 

upper path it bias the choice of future ants and hence 

after some time all ants use the upper path only.   

 
Figure 2: Single bridge experiment. (a) Experimental setup. (b) 

Results for a typical single trial, showing the percentage of passages 

on each of the two branches per unit of time as a function of time. 

Eventually, after an initial short transitory phase, the upper branch 

becomes the most used. After Deneubourg et al., 1990. 

 

Let Um and Lm be the number of ants using the upper 

branch and the lower branch respectively, after m ants 

has crossed the bridge so Um + Lm = m. Now, the 

probability that the (m+1)th ant chooses upper branch 

Pu (m)  is  

 
Where k, h are the model parameters for fitting the 

experimental measures  

h= degree of nonlinearity (n higher  faster triggering 

for one of the branches) 

k= degree of attraction of an unmarked branch (k greater 

 greater amount of pheromone needed to make a non-

random choice) 

 

2.3 Mathematical modelling 

 

Let G = (N, A) be a connected graph with n= ׀N׀  nodes. 

The simple ant colony optimization (S-ACO) algorithm 

can be used to find a solution to the shortest path 

problem defined on the graph G, where the solution is a 

path on the graph connecting a source node„s‟ to the 

destination node„d‟ and the length of connection can be 

defined as say, either equal to the physical length of the 

connection or, using any other conversion factor as 

specified in the problem under consideration.  

Please see the figure below. 

 

 
Figure3: ants build solution that is paths from the source to the 

destination node The ant choosing the dark line will arrive earlier to 

the destination and will be therefore first to bias search of ants 

moving back to the source node 

 

 

To simulate the pheromone trail mathematically a 

variable τij is introduced, where τ is the artificial 

pheromone trail associated with the arc (i, j) of the graph. 

(see [3],[4],[5]) Pheromone trails are read and written by 

the ants. The amount (i.e. the magnitude) of the 

pheromone trail is proportional to the utility, as 

estimated by the ants, of using that arc to build good 

solutions. So, a path that is used by the ants more 

frequently will have larger value of τ as compared to the 

value of τ for a less visited path. 

 

Each ant applies a step-by-step constructive decision 

policy to build solutions to the problem. At each node 

local information, maintained on the node itself and/or 

on its outgoing arcs, is used in a stochastic way to decide 

the next node to move to. The decision rule of an ant „k‟ 

located in node „i‟ uses the pheromone trail τij, to 

compute the probability with which it should choose the 

node „j‟ as the next node is (see [3],[4]): 

(j є Ni, where Ni is the set of one step neighbours of 

node i) 

 
While building the solutions ants deposit the pheromone 

information on the arcs they use. In S-ACO ants deposit 
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a constant amount Δτ of pheromone (see 

[3],[4],[5],[6],[7]) . Consider an ant that at time instant t 

moves from node i to node j. It will change the 

pheromone trail i.e. the value of τij  as follows  

τij  τij (t) +  Δτ 
(see [3]) ,[5]) so, by this rule, which simulates real ants‟ 

pheromone depositing on arc (i, j), an ant using the arc 

connecting the node i to the node j increases the 

probability that the ants will use the same arc in the 

future. As in the case of real ants, autocatalysis and 

differential path length are at work to favour the 

convergence of all the ants to the shortest possible 

path(and thus to the solution of the problem under 

consideration.)  

The technique is very simple however this simplicity 

leads to some problems and one of them is: the solution 

may have path that is locally optimized but not globally. 

So, to avoid the quick convergence of all the ants 

towards a sub-optimal path, an evaporation mechanism 

is added (see [3], [5]) i.e. similar to real pheromone 

trails, artificial pheromone trails „evaporate‟. In this way 

the pheromone intensity decreases automatically, and 

hence favouring the exploration of the different arcs 

during the search process. The evaporation is carried out 

in a simple way, decreasing the pheromone trail 

exponentially, 

 

τ          (1-ρ)  τ 

 

where ρ є (0,1], at each iteration of the algorithm (see 

[3]) . Preliminary experiments run with the S- ACO 

using a simple graph modeling, the apparatus as shown 

in the Figure 1 have shown that the algorithm effectively 

finds the shortest path between the simulated nest and 

the simulated food sources. Also is has been noticed 

with experiments that as we increase the complexity of 

the searched graphs, for example increasing the number 

of branches on different length connecting the food 

source and the ant colony. Then, the behaviour of the 

algorithm tend to be less stable and the value given to 

the parameter becomes critical. 

 

III. RESULT AND DISCUSSION 
 

3.1 Traveling salesman problem (TSP) 

In the traveling salesman problem „n‟ number of cities 

are given which are connected by each other and the 

problem is of finding a shortest closed tour which visits 

all the cities in such a way that no city is visited twice i.e. 

the problem is equivalent to finding the shortest 

Hamiltonian path on graph with „n‟ vertices. 

 

3.2. Modeling of the system  

3.2.1 Artificial ants or the ant system  

 

(see [8], [9]) An artificial ant is an agent which moves 

from city to city on a TSP graph. It chooses the city to 

move to using a probabilistic function both of trail 

accumulated on edges and of a heuristic value, which 

was chosen here to be a function of the edges length. 

Artificial ants probabilistically prefer cities that are 

connected by edges with a lot of pheromone trail and 

which are close-by. Initially, m artificial ants are placed 

on „m‟ randomly selected cities. At each time step they 

move to new cities and modify the pheromone trail on 

the edges used this is termed as local trail updating.  

 

When all the ants have completed a tour, the ant that 

made the shortest tour modifies the edges belonging to 

its tour termed global trail updating, by adding an 

amount of pheromone trail that is inversely proportional 

to the tour length. 

 

These are three ideas from natural ant behaviour that we 

have transferred to our artificial ant colony (see [8]): 

 

(i) The preference for paths with a high pheromone 

level,  

(ii)  The higher rate of growth of the amount of 

pheromone on shorter paths, and  

(iii) The trail mediated communication among ants.  

 

Artificial ants were also given a few capabilities which 

do not have a natural counterpart, but which have been 

observed to be well suited to the TSP application, they 

are (see [8]):  

(i) Artificial ants can determine how far away cities 

are, and  

(ii) They are endowed with a working memory Mk 

used to memorize cities already visited (the 

working memory is emptied at the beginning of 

each new tour, and is updated after each time step 

by adding the new visited city).  
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3.2.2 Mathematical translation of the concepts 

 

There are many different ways to translate the 

above principles into a computational system in 

order to solve the TSP.  

 

3.2.2.1 Transition rule  

An artificial ant k in city “i” chooses the city “j” 

move to among those which do not belong to its 

working memory Mk by applying the following 

probabilistic formula: 

 
 

3.2.2.2 ACS (Ant Colony System) transition rule 

 

An alternative approach to calculate the probability with 

which an artificial ant k in city “i” chooses the city “j” 

move to among those which do not belong to its working 

memory Mk is  

 
 

Where  τij(t) is the amount of pheromone trail on edge (i, 

j),  ηij(t) is a heuristic function, which was chosen to be 

the inverse of the distance between cities i and t, α is a 

parameter that treads off local vs global information,  β 

is a parameter which weighs the relative importance of 

pheromone trail and of closeness, q is a value chosen 

randomly with uniform probability in [0, 1], q0 ( 0 ≤ q0 ≤ 

1 ) is a parameter. where 
k

ijp  is the probability with 

which ant k chooses to move from city i to city j. 

 

3.2.3 Pheromone trail updating 

 

The pheromone trail is changed both locally and 

globally (see [3], [5], [8], [10]). Global updating is 

intended to reward edges belonging to shorter tours. 

Once artificial ants have completed their tours, the best 

ant deposits pheromone on visited edges; that is, on 

those edges that belong to its tour. (The other edges 

remain unchanged.) The amount of pheromone Δτ(i, j) 

deposited on each visited edge (i, j) by the best ant is 

inversely proportional to the length of the tour, the 

shorter the tour the greater the amount of pheromone 

deposited on edges. This manner of depositing 

pheromone is intended to emulate the property of 

differential pheromone trail accumulation, which in the 

case of real ants was due to the interplay between the 

length of the path and continuity of time. 

  

  3.2.3.1 Global trail updating 

 

 The formula for global trail updating is (see [8], [10]): 

 

 

 
Q in a constant and Lk is the total length traveled by the 

k
th
 ant during the compete tour. ρ is the factor introduced 

to account for trail evaporation.Global trail updating is 

similar to a reinforcement learning scheme in which 

better solutions get a higher reinforcement 

 

3.2.3.2 Local trail updating 

Local updating is intended to avoid a very strong edge 

being chosen by all the ants. Every time an edge is 

chosen by an ant its amount of pheromone is changed by 

applying the local trail updating formula (see [10]):  

 

 
where n = number of cities and Lnn  is a the length of the 

best greedy tour. Local trail updating is also motivated 

by trail evaporation in real ants. 

 

 

4.3 The algorithm 

 

The algorithm to solve the problem can be stated as 

follows: 

At time zero an initialization phase takes place during 

which ants are positioned on different towns randomly 
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and, initial values τij(0) for trail intensities are set on the 

edges. The first element of each ant‟s tabu list is set 

equal to its starting town. (tabu list can be defined as the 

data structure associated with an ant where it keeps the 

information of the cities already visited so that it should 

not go to that city again, and tabuk means the tabu list on 

ant k.) Thereafter ants start their journey and moves 

from city to city by applying the probabilistic rules 

which further depends upon: 

i. pheromone trail τij, which gives information on how 

many ants had already passed from this route 

ii. The visibility (as defined by M. Dorigo (see [9])) ηij 

which says that closer a city more desirable it is. 

 

Setting to 0 implies that trail level is no longer 

considered, and a stochastic greedy algorithm with 

multiple starting point is obtained. After n iterations the 

tabu list of all the ants will be full then for each ant Lk 

(i.e the distance traveled by k
th
 ant)  is calculated and the 

value of minimum L is stored rest all values are 

deallocated and then depending upon the scheme of 

pheromone update the level of pheromone are updated. 

This process is iterated NCMAX times or all the ants use 

the same tour ( this phenomena is known as stagnation 

behaviour) where NCMAX is the user defined parameter 

and then L = min Lk  ( over NCMAX iterations) is 

calculated, which in turn is the solution given by the 

algorithm. 

 

Below a formal ant-cycle algorithm or simple ant colony 

optimization algorithm is given: 

 

 

 

 
 

IV. CONCLUSION 

 
Today, several hundred papers have been written on the 

applications of ACO. It is a true metaheuristic, with 

dozens of application areas. While both the performance 

of ACO algorithms and theoretical understandings of 

their working have significantly increased. There are 

several areas in which until now only preliminary steps 

have been taken and where much more research will 

have to be done. One of these research areas in the 

extension of ACO algorithms to more complex 

optimization problems that include (1) dynamic 

problems, in which the instance data, such as objective 

function values, decision parameters, or constraints, may 

change while solving the problem; (2) stochastic 

problems, in which one has only probabilistic 

information about objective function values, decision 

variables values, or constraint boundaries, due to 

uncertainty, noise, approximation, or other factors; and 

(3) multiple objective problems, in which a multiple 

objective function evaluates competing criteria of 

solution quality. Active research directions in ACO 

include also the effective parallelization of ACO 

algorithms and, on a more theoretical level, the 

understanding and characterization of the behavior of 

the ACO algorithms while solving a problem. 
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